
TOOLBOX © 20120John A. Oakey

v020921a2021A

For
3.6+

Data on Disk (storing data permanently)

For reading and writting data on a disk, Python has 2 built-in functions:

(1) open - opens a new or an existing file, ex: fileVariable = open(path, mode)

(2) with - which also closes files automatically. ex: with open(path, mode) as fileVariable

There are 8 file methods:

Below:  means "yields", "results in", or "stands

for". string  a series of characters. file  a file being

written or read. path  the whole address to file.

There are 5
combinable modes:
'r' : read only
'r+' : read or write
'w' : write only
'w+' : write or read
'a' : append
'a+' : append or read
'+': allow read / write
'b' (binary): 'rb', 'rb+',
'wb', 'wb+', 'ab', 'ab+'
binary files are not
explained in detail here

7 Ways to Read a text file [Caveat: a line == comparison must end with "\n" for the compare to succeed.]

(1) looping : stepping through the lines - for line in file: (note: print() adds "\n" by default)

(2) .readline: gets an individual line and adds "\n" - getaline = file.readline()

(3, 4, 5) .read : gets all or some of the file in a single string or a list:

3. test_string = file.read() get whole file in a string, retaining newlines (\n)

4. test_string2 = file.read(x) gets 1st x characters (\n counts as 1 character)

5. test_list = file.read().splitlines() gets lines as items in a list, removing newlines (\n)

(6) list(file): read all the lines of a file into a list - l2 = list(file) retains newlines in list items

(7) .readlines: read all lines of a file into a list - mylist = file.readlines() retains newlines in list items - like list(file)

file.write(string), write to a new file, add "\n",

 the number of characters written

file.read(size), get all or some data,  a string

file.close(), close the file, if not using with

file.readline([#chars]), gets a single line that

ends in a newline ("\n"), it retains the newline

except for the last file line

file.readlines() - same as list(file) - reads all

lines found in a file to a List variable

file.tell(), gives index of location in file

file.seek(offset, from_what [value—

default is 0]), positions file pointer

 text files allow 0 only
 binaryfiles: 0 - beginning of the file

1 - use current position
2 - use end of the file

Note: offset can be negative
Note: addition functionality using IO module

Pathlib Since [3.4] the pathlib module has simplified access functions: use "from pathlib import Path [as p]" to
get pathlib's main class which creates Concrete paths (as opposed to Pure paths) for the platform on which code is

running. The new limited read/write simplifies the most basic disk transactions. p(pathsegs) adapts to the type system
in which it finds itself running. Note: These abreviated descriptions do not show many available options! * An absolute
path is a full path, a relative path is with respect to your CWD (Current Working Dir). '.' is a shortcut for your CWD
The with structure is a bit different when using Pathlib: see wikipython; with pathlib_path.open('w+') as file_alias

assumes mary.txt is a 4 line nursery rhyme

count=1
with open(mary_path, "r") as mary:
 for line in mary:
 print(count, end=" ")
 print(line, end="")
 if "snow" in line:
 print(" **Found snow")
 count+=1

PATHLIB Path FUNCTIONS
Working with Text or Binary Files

new in 3.5 -The read/write methods in pathlib.Path
open, execute, and close a file in one command
though they have limited utility; no close state-
ment, no need for “with”, but first you must use:
p(pathsegments) creates concrete path based on
the current op sys (a PosixPath or WindowsPath)
Write text wholepath.write_text('sometext') one
string only, there is no append mode, replaces any
existing file! Writes ONE string as a whole file.
mypath is path to directory, myfile is name of file:

wholepath = p(mypath / myfile) # join parts
wholepath.write_text("some_string")

Read text from a file (whole file read to a string)
wholepath.read_text()
Read binary data in to a bytes object
wholepath.read_bytes()
Write a bytes file w/ binary info
wholepath.write_bytes(b'Binary data')
To Open a file *for low level access - mostly ignore this
as it is rarely needed, wholepath.open(**)

For more read/write control use a with/open
structure: with wholepath.open('w+') as file_alias:

Path, Directory, or File Information
Find Current Working Directory p.cwd()
Find user's home directory p.home()
Confirm dir in CWD wholepath.is_dir()
Confirm a dir (given full path) mypath.is_dir()
Confirm a file
wholepath.is_file() or in cwd myfile.isfile()
Confirm a path exists to a directory or file
wholepath.exists()
Confirm path & file for equality
wholepath.samefile(other str / path obj)
Create iterator of files in directory

wholepath.iterdir()  path objects of dir contents
Find matching files (OR use glob module) - only
works inside a sorted() structure : * - all char, ? - a
single char, [] - literal match like[?], ** - recursive
 iter of matches in CWD
 iter_name = sorted(p('.').glob('pattern'))
 all sub dir and files

 sorted(p('.').glob('**/*.some_ext'))
 all sub dir and files

 sorted(wholepath.rglob('*.some_ext'))
Return info about a path "x"
wholepath.stat(x)[.st_information]; including:
_mode, _dev, _gid, _uid, _size, _mtime, more…

Create a Path, Directory or File
Create new directory
wholepath.mkdir(parents=False) if parents=True
those segs will be created
Create a file at path/name = (path)
wholepath.touch(mode=0o666)
Create a symlink
wholepath.symlink_to(symlink_name, target
_is_directory=False)

Manipulate Paths, Directories or Files
Replace/rename unconditionally
wholepath.replace('new_ path str or path object')
Rename a file or directory
wholepath.rename('new_ path str or path object')
Remove an empty directory
wholepath.rmdir()
Remove symlinks in a path - new obj
wholepath.resolve() - make path absolute
Other methods include: chmod(mode), group(),
ismount(), is_symlink(), is_socket(), is_fifo(),
is_block_device(), is_char_device(), lchmod
(mode), lstat(). owner(), readlink(), rglob(pattern) -
like adding **/, symlink_to(), unlink, link_to

Useful os/os.path Functions
Change current CWD - oddly Pathlib does not
support this critical function, must use:
os.chdir(path) *poor practice to change cwd
Ex: os.chdir('D:\\Users\\me') **note \ escapes itself
*supports an open directory descriptor
Return a list of entries in the CWD path
os.listdir(path='.')
Return an iterator of os.DirEntry objects
os.scandir(path)
*iterated item attributes are: name and path
Create a chain of directories
os.makedirs(path)
Delete a file
os.remove(path) same as os.unlink(path)
Delete a directory
os.rmdir(path)
Concatenate Paths (smart join)
os.path.join(path, paths)
Split path into head and tail
os.path.split(path) tail is usually file name
Rename files/paths recursively
os.renames(old, new) or os.rmdir(path)
Get Name of user logged in
os.getlogin()

Useful shutil Functions
Move file or directory  destination path

shutil.move(src, dst)
Copy file contents destination path
shutil.copyfile(source, destination)
Copy file source to destination  dst path;
shutil.copy(src, dst)
shutil.copy2(src, dst) sab but save metadata



TOOLBOX © 2021 John A. Oakey

V020621a
2021A p2

For
3.6+

Data on Disk - (commands/modules/methods)
compliments: Big Daddy &
www.wikipython.com

module: pickle - not secure, Python specific,
many object types to/from binary serilization, not
human readable. Basic pickle uses standard “with
open” structure - must open for binary ops.
import pickle - To .dump (save) an object/file:
pickle.dump(object-to-pickle, save-to-file,
protocol=3, ...)
EX: pickle.dump (object _name, myFile)
To .load (retrieve) an object/file:
pickle.load(file-to-read [, fix_imports = True][,
encoding=”ASCII”] ...)
EX: myList = pickle.load(myFile)
.dumps creates bytes object, does not write a file
.loads reads a pickled object from a bytes object.
*lambda functions cannot pickle. pickle offers more
control with additional methods.
What can be pickled: None, True/False, integers, float
-ing point numbers, complex numbers, strings, bytes,
bytearrays, tuples, lists, sets, and dictionaries containing
only picklable objects, functions defined at the top level
of a module, built-in functions defined at the top level of
a module, classes that are defined at the top level of a
module, instances of such classes whose __dict__ or
result of calling __getstate__ is picklable.

module: fileinput import fileinput - a
recursive iterator for multiple files. Methods:
.filename(), .fileno(), .lineno(), filelineno(),
isfirstline(), .isstdin(), .nextfile(), .close
for line in fileinput.input(files):
 process(lines) & then repeat for each file

modules: tarfile, zipfile, zipapp, zipimport, zlib, gzip: these
modules provide extensive support for compression and decom-
pression of files. tarfile and zipfile could have a whole toolbox and it
would not begin to address all of their options.
tarfile.open(name=None, mode='r', fileobj=None,
bufsize=10240, **kwargs) handles gzip, bz2, lzma
ZipFile.open name mode='r', pwd=None, *, force_zip64=False)

Example from: (demo of context manager application)
https://docs.python.org/3/library/zipfile.html#module-zipfile
with ZipFile('spam.zip') as myzip:

 with myzip.open('eggs.txt') as myfile:
 print(myfile.read())

module: C S V - comma separated values - import csv
with open(cvsfile_file_path, [mode], newline='') as alias_name:
 code to read/write/etcetera
*Note: If csvfile is a file object, open with newline=""
Next create a .reader or .writer object or call another function:
* csv.register_dialect(name[, dialect[, format_parameters]])
* csv.unregister_dialect(name)
* csv.get_dialect(name)
* csv.list_dialects()
* csv.field_size_limit([new_limit])
* csv.reader(file_alias [,dialect='excel'][,format_parameters])
csvreader object methods are:

.__next__() usually call as next(reader)

.dialect read only value of dialect in use

.line_num number of lines (not records) read

.fieldnames if not passed, initialized on 1st access

* csv.writer(csvfile [,dialect='excel'] [,format_parameters])
Note: None is written as "". Other data written as strings.
cvswriter object methods are:
 .writerow(row) write the row
 .writerows(rows) write all rows
 .dialect read only value of dialect in use
 .writeheader() write a row with field names per the constructor
Basic Examples:
with open('some.csv', 'w', newline='') as f:
 writer = csv.writer(f)
 writer.writerows(someiterable)
with open('some.csv', newline='') as f:
 reader = csv.reader(f)
 for row in reader:
 print(row)
csv.DictReader and csv.DictWriter classes
The module provides classes that operate like regular read/write
functions but map rows into a dict(**kwarg) class mapping object
with keys given by the fieldnames parameters. If fieldnames is
omitted, the values in the first row of file f will be used as the
fieldnames. As of [3.8] returned rows are of type dict.
csv.DictReader(f, fieldnames=None, restkey=None, restval=None,
dialect='excel', *args, **kwds)
csv.DictWriter(f, fieldnames, restval='', extrasaction ='raise',
dialect='excel', *args, **kwds)
Note: fieldnames is NOT optional.
DictReader and DictWriter Basic Examples:
with open ('names.csv', newline='') as csvfile:
 reader = csv.DictReader(csvfile)
 for row in reader:
 print(row['first name'], row['last name'])

with open('names.csv', 'w', newline='') as csvfile:
 fieldnames = ['first_name', 'last_name']
 writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

 writer.writeheader()
 writer.writerow({'first_name': 'Baked', 'last_name': 'Beans'})
 writer.writerow({'first_name': 'Lovely', 'last_name': 'Spam'})
 writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})

CSV dialects and format parameters
A dialect is a shortcut notation for a group of
format_parameters common to a specific "type"
of comma separated files. 'excel', the granddaddy
of all dialects, occupies its own class automatically
registered as a dialect as is 'excel_tab' for tab
delimited files and 'unix_dialect' which quotes all
fields and line terminates with '\n'. Individual
format parameters can override the group defaults.
Constants are provided to specify how quoting is
written or read:
format_parameters for dialects are:
.delimiter - defaults to ','
.doublequote - defaults to True, quotechar doubled

if false, escapechar is prefix to quotechar
.escapechar - default to None which disables
escaping
.lineterminator - string writer uses to terminate,

defaults to '\r\n' which is standard windows
format

.quotechar - defaults to a standard quote: "

.quoting - controls when quotes are generated or
recog-nized using constants. QUOTE_MINIMAL
is default.

Reader Constants:
csv.QUOTE_NONNUMERIC - converts unquoted fields
to float values
csv.QUOTE_NONE - perform no processing of quote
characters
Writer Constants:
csv.QUOTE_ALL - quote all fields
csv.QUOTE_MINIMAL - quote fields with delimiter,
quotechar, or lineterminator characters
csv.QUOTE_NONNUMERIC - quote all non-numeric
fields
csv.QUOTE_NONE - never quote fields

.skipinitialspace - default is False

.strict - default is Fault, True raised Error on bad input



TOOLBOX© 2020 John A. Oakey

v020621a

For
3.6+

2021A

(JavaScript Object Notation) - import json
JSON is a minimal data interchange format replacing XML for server-to-web-

app communication. All json data objects are key (or name) : value pairs
(similar to a Python dictionary) with elements separated by commas.

 json objects are defined by braces { }. A value can be any json data type

(see table) including an array or nested array. All objects, keys and values
are coerced into strings. Some nested objects are in arrays defined by

brackets []. Examples: {"name": value} or {"name":[{"key":"value",
"key":[value, value,[…]]}]}. The table shows Data type conversions. json

encodes and decodes its data objects using, or producing, a '''json string''' or
a json file object. json code is valid JavaScript. json files end with ".json"

 Placing and Retrieving json Data on Disk
json.load (fp; *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=N

one,object_pairs_hook=None, **kw) [Load json data from a .json file on disk to a Python dictionary]
A json file object can be retrieved and converted to Python with the json.load() method. Example:
with open(file_path_to_file.json, 'r') as file_ref_name:
 new_dict = json.load(file_ref_name)

json.dump (obj, fp, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw) [Save data to disk]
A Python dictionary obj, even nested, can be encoded and saved to a json file with the json.dump()
method. You can NOT make repeated calls to dump using the same fp. Example:
with open(file_path_to_file.json, 'w') as file_ref_name:
 json.dump(dictionary_name, file_ref_name, [indent=some_int][sort_keys=True/False])

Interchanging/Converting json Strings and Python Objects

 json.dumps (obj, *, skipkeys=false, ensure_ascii=True, check_circular=True, allow_nan= True,
cls=None, indent=None,separators=None, default=None, sort_keys=False, **kw) [Used to convert a
Python dictionary to a string for output, or to be used as a json object.]
A Python dictionary can be converted to a Python/json string for review or storage with json.dumps
(name_ of_object). Particularly note the indent and sort_keys options - see Notes below.

json.loads (s, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=

None,object_pairs_hook=None, **kw) [Used to convert json strings to Python object(s)]

json strings can convert to one or more Python dictionaries and nested objects with the json.loads
(name_ of_string) method. Notes: (1) json.loads is pronounced like "Jason load ess", where "ess" is for

string (2) true / false / null are converted to True / False / None.

Notes on Option Terms: s—a string holding valid json code; fp—file name, derived from "file pointer"
used in C; skipkeys—if set to true, a nonstandard dict key is skipped (false is default); ensure_ascii

(default is true) escapes non-ASCII characters - to allow Unicode characters, set this to False and when
opening a file to be written set encoding="utf-8"; check_circular False results in an OverflowError (at

best); allow_nan assigns an out of range float to Nan, Infinity, -Infinity; indent—pretty-print with this
spacing; separators—if used, must be a tuple of (item_separator, key_separator); default—if specified, is

a function called for objects that cannot serialize; sort_keys if set to true, yields dictionaries sorted by key.
It may be helpful to review workflow on the JSON page under Other Modules on www.wikipython.com

An example of a valid Python/json string object: (see wikipython.com for workflow of json objects)

zoostr = '''{"cageA":{"monkey1":

[{"type":"howler","age":5,"name":"Bigmout

h"}], "monkey2":[{"type":null, "age":4,

"name":"Webster"}]}, "cageB":{"ape1":

[{"type":"gorilla","age":20,"name":"Mr.

Big"}],"ape2": [{"type":"orangutan",

"age":8,"name":"Longarm"}]}}'''

mydata = json.loads(zoostr) / pp.pprint(mydata) #modified pre�y print

{ 'cageA': { 'monkey1': [{'age': 5, 'name': 'Bigmouth', 'type': 'howler'}],
 'monkey2': [{'age': 4, 'name': 'Webster', 'type': None}]},
 'cageB': { 'ape1': [{'age': 20, 'name': 'Mr. Big', 'type': 'gorilla'}],
 'ape2': [{'age': 8, 'name': 'Longarm', 'type': 'orangutan'}]}
}

Python JSON

 dict object

 list, tuple array

 str string

 int, float, int- & float-

derived Enums

 number

 True true

 False false

 None null

Data on Disk JSON



TOOLBOX© 2020 John A. Oakey

v020621a

For
3.6+

2021a

Data on Disk SQLite3
 U���� ������3 - this is a high level abstraction of the process of creating and using SQLite3
 Import the module: import sqlite3 [as sq]  (creates an abbreviated alias for sqlite3)

 Create a connection object to database (disk or RAM)
sq3con = sq.connect (‘some-db-including-path’ [,detect_types]) Note: special name ":memory:"
can be used to CREATE a database in RAM; Impermanent, but very fast. See module doc for
options: https://docs.python.org/3/library/sqlite3.html#module-sqlite3 Examples:
dbpath = r"D:\Temp\Testdb" | or | sq3con = sq.connect(":memory:")
sq3con = sq.connect(dbpath) | |
The connection object exposes most of the TCL components and some non-standard shortcuts.

 Create a cursor object using the connection object. The cusor object exposes methods and attributes necessary to use the
database) – a cursor object is essentially an active session of the database. CurObj = sq3con.cursor()
 Use DDL (Data Definition Language) commands to CREATE, DROP or ALTER a database.

 Use DML/DQL commands to maintain and retrieve. change and manipulate information.
INSERT, UPDATE, DELETE, MERGE, plus DQL's SELECT

 Use Cursor Object methods to access data: curobj.execute('SELECT * FROM zoo_data WHERE type = "mammal")

 Close connection and/or cursor. Use a module
level command to destroy the database, if desired.

Cursor Object Methods and Attributes: .fetchone() - Fetches the next row of a query result set, returning a single
sequence (a tuple of col values), or None when no more data is available. .fetchmany(size=cursor, arraysize) - Fetches the next
set of rows of a query result, returning a list of tuples. An empty list is returned when no more rows are available. .fetchall() -
Fetches all (remaining) rows of a query result, returning a list. .close() - Close the cursor session
.rowcount - Note the determination of “rows affected”/”rows selected” is quirky. .lastrowid - This read-only attribute provides the
rowid of the last modified row. Set this only if you issued an INSERT or a REPLACE statement using the execute() method. In
addition to fetchone() and fetchall() to retrieve data, the cursor can be used as an iterator.

Methods of the connection object once created: sq3con.cursor(factory=Cursor) – step 3 below.
sq3con.commit() - save changes and makes them visible; sq3con.row_factory;
sq3con.rollback() – reverses any changes to the database since the last commit();
sq3con.close() – closes the database connection – does NOT call commit() before closing;
sq3con.create_function(name, num_params, func) - Creates a user-defined function, see online doc;
sq3con.create_aggregate(name, num_params, aggregate_class); sq3con.total_changes;
sq3con.iterdump() - Returns an iterator to dump the database in an SQL text format.
Note sq3con.execute() and sq3con.executemany() connection objects are non-standard SQLite3 shortcuts that look like the
cursor objects, both use the .execute and .executemany keywords, but these shortcuts also return a cursor.

Python—SQLite3 Data Types
Python
None
int
float
str
bytes

SQLite
NULL
INTEGER
REAL
TEXT
BLOB

SQLite3 Components & Terms
DDL: Data Definition Language -
commands to create a db
DML: Data Manipulation Lan-
guage - maintenance commands
DQL: Data Query Language
DCL: SQL security components
TCL: Transaction Contol Commands
sqlite3 non-standard methods:

Module Level Functions: sq.PARSE_DECLTYPES - a constant used with detect_types
parameter of connect to force parsing 1st word of declared type to assign proper conversion;
sq.sqlite_version -  a str; sq.PARSE_COLNAME - like above, parses column name looking for
[mytype] and excludes that as part of column name. sq.complete_statement(str) -  True if
the string contains one or more complete SQL statements terminated by semicolons. (Allows
construction of a shell.) sq.connect(db[, timeout, detect_types, isoloation_level, check_same_
thread, factory, cached_statements, uri]) opens connection, returns connection obj.

ABORT
ACTION
ADD
AFTER
ALL
ALTER
ALWAYS
ANALYZE
AND
AS
ASC
ATTACH
AUTOINCREMENT
BEFORE
BEGIN
BETWEEN
BY
CASCADE
CASE
CAST
CHECK
COLLATE
COLUMN

COMMIT
CONFLICT
CONSTRAINT
CREATE
CROSS
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
DATABASE
DEFAULT
DEFERRABLE
DEFERRED
DELETE FROM table WHER
DESC
DETACH
DISTINCT
DO
DROP object, object name
EACH
ELSE
END
ESCAPE
EXCEPT

EXCLUDE
EXCLUSIVE
EXISTS
EXPLAIN
FAIL
FILTER
FIRST
FOLLOWING
FOR
FOREIGN
FROM
FULL
GENERATED
GLOB
GROUP
GROUPS
HAVING
IF
IGNORE
IMMEDIATE
IN
INDEX
INDEXED
INITIALLY
INNER
INSERT
INTO table (col1, col2)

 INTO table values (v1,v2)

INSTEAD
INTERSECT
INTO
IS
ISNULL
JOIN
KEY
LAST
LEFT
LIKE
LIMIT
MATCH
NATURAL
NO
NOT
NOTHING
NOTNULL
NULL
NULLS
OF
OFFSET
ON
OR
ORDER
OTHERS
OUTER
OVER
PARTITION

PLAN
PRAGMA
PRECEDING
PRIMARY
QUERY
RAISE
RANGE
RECURSIVE
REFERENCES
REGEXP
REINDEX
RELEASE
RENAME
REPLACE
RESTRICT
RIGHT
ROLLBACK
ROW
ROWS
SAVEPOINT
SELECT
SET
TABLE
TEMP
TEMPORARY
THEN
TIES
TO

TRANSACTION
TRIGGER
UNBOUNDED
UNION
UNIQUE
UPDATE
USING
VACUUM
VALUES
VIEW
VIRTUAL
WHEN
WHERE
WINDOW
WITH
WITHOUT

Python Implementation of SQL DDL Commands: CurObj.execute (“sql [,parameters]”) - this is the method called
to execute SQL commands; The 3 most common DDL commands are: CREATE TABLE (table name(col name, data
type […])), ALTER TABLE(table name ([ADD parameters][DROP parameters]), and DROP TABLE - CurObj.execute
(“DROP TABLE tablename”) general form: CurObj.execute (“CREATE TABLE table name (col name data type , …)”).

sqlite3.Row is used as a row factory, accessed by both index
and case insensitive name. It returns rows as tuples. Initialize
with something like: con.row_factory = sq.Row

SQLite Keywords/Operators

www.wikipython.com



