BIG DADDT'S

© 2019 John A. Oakey

V020321

RPi.GPIO Module Usage Configureable pins: 3V3

Import the module: Out and 3V3 tolerant In
import RPi.GPIO [as string] - as "1I0" is assumed in the following

Pin numberi NQg: achoice is required to specify BCM or
BOARD to designate pins/channels: Note that for all intents a "PIN"
means the same thing as a "CHANNEL": (see diagram on page2)
10.setmode(I0.BCM) or 10.setmode(I0.BOARD)

Setu P: Every pin that is to be used must be defined as in or out:
10.setup(channel, 10.IN) or 10.setup(channel, 10.0UT)
An initial state can be set by adding: initial=10.HIGH or 10.Low
For example: 10.setup(channel, 10.0UT, initial=10.HIGH)
Multiple channels can be set at once using a list or a tuple:
chan_list = [11,12] or chan_tuple = (11,12)

For example: 10.setup(chan_list, 10.0UT)

Read or write (set) pins:

10.input(channel) (returns: o=False=10.Low, 1=True=I0.High)
10.output(channel, state) (states same as above)

Can output to several channels with one command:

chanlist = [11,12] <- this also works with tuples
10.output(chanlist, 10.LOW) <- this sets all in chanlist to LOW
10.output(chanlist, (10.HIGH, 10.LOW)) <- this sets first
HIGH and the second LOW

Environmental information:

GPIO.RPIL_INFO about your RPi
GPIO.RPI_INFO['P1_REVISION'] Raspberry Piboard revision
GPIO.VERSION RPi.GPIO version number

Find the function of a channel: func = 10.gpio_function(pin)
Returns: IN, OUT, SPI, I2C, HARD_PWM, SERIAL, or UNKNOWN

Pull UP / Pull DOWN:

Unconnected pins float. Default values (High or Low) can be set in
software or with hardware

Hardware:

Pull Up: Input channel -> 10K resistor -> 3.3V
Pull Down: Input channel -> 10K resistor -> oV
Software:

10.setup (channel, 10.IN, pull up_down =10.PUD_UP) or
10.PUD_DOWN or 10.PUD_OFF

Edge detection: change of state event — 3 ways to handle

1. wait_for_edge() function - stops everything until an edge
is detected: 10.wait_for_edge (channel, I0.RISING) can
detect edges of type IO.RISING, I0.FALLING or I0.BOTH
2 .event_detected() function - use in a loop with other
activity — event triggers priority response. Example:
10.add_event_detect(channel, 10.RISING) set up detection
[your loop activity here]
if 10.event_detected(channel):
print('Button pressed")

3. threaded callbacks - RPi.GPIO runs a second thread for
callback functions. This means that callback functions can be run at the
same time as your main program, in immediate response to an edge.
For example:
def my__callback(channel):

print('Edge detected on channel %s'%channel’)

print('This is run in a different thread to your main program.")

10.add_event_detect(channel, 10.RISING, callback =
my_callback) add rising edge detection on a channel

...the rest of your program...

If you want more than one callback function:
def my_callback_one (channel):

print ('Callback one")
def my_callback_two (channel):

print ('Callback two")
10.add_event_detect(channel, 10.RISING)
10.add_event_callback(channel,
my_callback_one)
10.add_event_callback(channel,
my_callback_two)

Note that in this case, the callback functions are
run sequentially, not concurrently. This is
because there is only one thread used for callbacks,
and every callback is run in the order in which it is
defined.

4. Remove Event Detection:
10.remove_event_detect(channel)

Switch debounce: solutionstoa
button event causing multiple callbacks

Hardware: add a o.1uF capacitor across your
switch.

Software: add the bouncetime= parameter to
a function where you specify a callback function.
bouncetime= should be specified in milliseconds.
10.add_event_detect(channel, 10.RISING,
callback=my_callback, bouncetime=200)
or

10.add_event_callback(channel,
my_callback, bouncetime=200)

Cleanup: resets all channels and clears the
pin numbering system at the end of a program. Just
good practice.

10.cleanup()

Or cleanup selected pins:

10.cleanup(channel)

10.cleanup( (channel1, channel2) ) <-tuple
10.cleanup( [channel1, channel2] ) <-or list

PW M: Pulse Width Modulation - analog
signal, Hardware available on (BCM / board)
PWMe: 12/32, 18/12; PWM1: is used for
audio 13/33- so use PWM@: GPI012/Pin32
Create a Software instance of PWM on any
in/out pin:p = 10.PWM(channel, frequency)

To start PWM: p.start(*dc)

*dc is the duty cycle (0.0 <= dc <=100.0)

To change the frequency:
p.-ChangeFrequency(freq) freqisthe new
frequency in Hz*

To change the duty cycle:
p-ChangeDutyCycle(dc)
where 0.0 <=dc <=100.0

To stop PWM: p.stop() “100 = 100 times a
second, .5 = once every 2 seconds, .1 is every 10
seconds, .0167 = once a minute
Using 1-wire: A single channel: GPIO

[4] is 1-wire capable for low speed sensor input;
Rpi must be configured to utilize alternate pin

functions like this! [ www.wikipython.com




BIC DADDTS |
M RA 12

© 2019 John A. Oakey

V020321

A Small RPi 2835 BCM\GPIO Glossary of Terms

BCM: Broadcom; BCM = GPIO in pin numbering

CE@/CE1: SPI Chip Select 0/1

DPI: Display Parallel Interface - uses 28GPIP pins

GPCLK: General Purpose Clock

I%C/12C/i2c/1IC: Inter-Intergrated Circuit; serial bus;
SCK or SCLK: Serial Clock, master to slave; SCL: BSC
Master clock line; SDA: serial data pin; ID_SC:
connection to SCLO; ID-SD connection to SDA®

SPI: Serial Peripheral Interface

2835 Raspberry Pi Model B+

JTAG: Joint Test Action Group
MSIO/MOSI: Master Slave Out/In
PCM: Pulse Code Modulation
PWM: Pulse Width Modulation RDX: receive, GPIO[10]
SDIO: SD card interface default is console in/out

UART :Universal Asynchronous
Receiver/Transmitter,
TDX: transmit, GPIO[8]

W1-GPIO: 1-Wire interface; defalut is bcm[4]

Shown below: 3600 {1 with 2% tolerance

/TN A

ANOCDE

_|_

CATHODE

FLAT 1st Digit |2nd Digit |Multiplier |Tolerance

/1 o g

_I_I | T ANODE || CATHODE

ANODE CATHODE 4 4

270Q -> red, purple, brown
330Q -> orange, orange, brown
10KQ -> brown, black, yellow g J

10 K

RPi maximum current to a single pin

is 16ma, to all pins is 56 mA. A 3v3 5% gold

supply is ~ 50 mA 9 9 10% silver

=

(2
IxR

(Ohm’s Law)

Current in | Resistance
Amps in Ohms

3V3
: Power 1 2 i
=10
d oo €8 ... B
PIO
3 5 9/-
. | GPIO [4] S GPIO [14]
1 wire epcLke 7 ,_LER@'BD-?/ 15
GPIO [15]
5 [] i 10 UARTO-RXD -/ 16
6 [GPIO[17] | 11 § 12 ?ﬂﬁm 81/1
7 | GPIO [27] q3 una s
s |GPIO[22] | 15 § 16 | GPIO [23] ‘35
Em 3va @ 17 § 18 | GPIO [24] | &&
ga DI ] Er
. O 19 i
E: _"" '. 21 f 22 | GPIO [25] 333
E
1 cpio PIO [8
b0 23 24 P1© 5 14 / 10
13 Ll 25 26 -.:,. -/ 11
_so [0] m_sc [1]
" |i2ce cepRoNNS 7 28 i2c EcFROM [s0/ 31
15 | GPIO [5] /29 0 21 /-
’/'
16 | GPIO [6] | 31 4} 32 E;:;:?Ej] 22/ 26
GPIO [13] I
7| pwmi alitdi! 33 g / -
GPIO[19] |,
4 PCM—E‘SI 35136/ GPIO[16] 24/ 27
- GPIO [20
19 | GPIO [26] | 37 38 PCM—[EII\'] 25/ 28
GPIO [21
20 ([ ! 40 PCM—D([JUT] -/29




